Parallelization of Multi-Block Flow Solver with Multi-Block/Multi-Partitioning Method
نویسندگان
چکیده
منابع مشابه
Partitioning and Multi-core Parallelization of Multi-equation Forecast Models
Forecasting is an important analysis technique used in many application domains such as electricity management, sales and retail and, traffic predictions. The employed statistical models already provide very accurate predictions, but recent developments in these domains pose new requirements on the calculation speed of the forecast models. Especially, the often used multi-equation models tend t...
متن کاملA parallel viscous flow solver on multi-block overset grids
A multi-block overset grid method is presented to accurately simulate viscous flows around complex configurations. A combination of multi-block and overlapping grids is used to discretize the flow domain. A hierarchical grid system with layers of grids of varying resolution is developed to ensure inter-grid connectivity within a framework suitable for multi-grid and parallel computations. At ea...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
A parallel Newton-Krylov flow solver for the Euler equations on multi-block grids
We present a parallel Newton-Krylov algorithm for solving the three-dimensional Euler equations on multi-block structured meshes. The Euler equations are discretized on each block independently using second-order accurate summation-by-parts operators and scalar numerical dissipation. Boundary conditions are imposed and block interfaces are coupled using simultaneous approximation terms (SATs). ...
متن کاملA Three-Dimensional Multi-Block Newton-Krylov Flow Solver for the Euler Equations
A three-dimensional multi-block Newton-Krylov flow solver for the Euler equations has been developed for steady aerodynamic flows. The solution is computed through a Jacobian-free inexact-Newton method with an approximate-Newton method for startup. The linear system at each outer iteration is solved using a Generalized Minimal Residual (GMRES) Krylov subspace algorithm. An incomplete lower/uppe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Society for Aeronautical & Space Sciences
سال: 2003
ISSN: 1225-1348
DOI: 10.5139/jksas.2003.31.7.009